
PHENIX Technical Note

The JSEB PCI Interface

Jack Fried

Instrumentation Division

Brookhaven National Laboratory

John S. Haggerty

Physics Department

Brookhaven National Laboratory

September 22, 2003
Version 1.0

Abstract

The PCI interface from the PHENIX Data Collection Modules to the

Sub-Event Buffer computers is described. The behavior of the card is

described, and the software support in Windows 2000 and Linux is docu-

mented.

The JSEB is a PCI board, shown in Figure 1, designed to interface the
VME Partition Module (PM) which transmit data from a group of PHENIX
Data Collection Modules (DCM’s) to x86 computers called Sub-Event Buffer’s
(SEB’s) which are the entry point for data into the Event Builder. The PCI
interface chip is the PLX 9080, which implements the 32 bit 33 MHz PCI 2.1
standard PCI bus master with 3.3V or 5V PCI signaling in CMOS [1]. The
board has two banks of 1 Mbyte static RAM, which can be written alternately
from the PM, providing double-buffering in hardware. The PLX 9080 and the

Figure 1: The JSEB card.

1

memory is controlled with an Altera FLEX10k FPGA. Since most of the logic on
the board resides in this FPGA (which is on-board reprogrammable by means
of a JTAG port), the behavior of the board is dependent on the design loaded
into the FPGA.

This document is meant to describe the current firmware and software con-
figuration of the JSEB.

1 Communication Protocol with Partition Mod-

ule

The communication protocol with the Partition Module was designed to be
simple and fast. A 50 pair cable with LVDS signals carries 32 bits of data and
a small number of control signals at 40 MHz from the Partition Module to the
JSEB. Most of the control signals are generated by the Partition Module; the
only exception is a HOLD signal generated by the JSEB to request the Partition
Module to stop sending data. Since the cable between the JSEB and the PM
can be quite long, the PM cannot stop sending data immediately, and so the
JSEB must be able to buffer a few words of data even after it has asserted the
HOLD signal. A 25m cable has a delay of about 125 ns, or 6 (40 MHz) clock
ticks, and the PM may need some number of clock ticks to respond, so the JSEB
design includes a FIFO in the FPGA of 12 words.

The basic protocol of the data transfer is shown in Figure 2. A logic ana-
lyzer was programmed to observe the protocol at the test points on the JSEB.
The top signal labeled DCMCLOCK is the 40 MHz clock from the Partition
Module and is too fast to see on the timescale of this transmission. The next
trace labeled DCMVALID is the envelope of valid data transmitted by the PM.
DCMLASTWD is the signal that the last word of event has been transmit-
ted. DCMVALID and DCMLASTWD may appear to be somewhat redundant,
but it was envisioned that the PM might have to turn off the VALID during
some transmissions, and then resume the transmission of the same event some
number of clock ticks later. In practice, this seems to rarely, if ever, happen.
The JSEBHOLD signal is generated by the JSEB to tell the PM to stop the
transmission of data. When the number of events per bank is set to zero (so
that there is one event per bank), as in this transmission, the HOLD signal is
asserted at the end of every event; with more events per bank, the HOLD is
asserted when the bank is full, either because the maximum number of events
or words has been reached. The design allows for the HOLD to be asserted
during the transmission of an event, and the PM is required to respond to it by
de-asserting the VALID until the HOLD is released. In practice, this also rarely,
if ever, happens, since the JSEB memory can keep pace with data written by
the PM.

Note that there is no error detection or correction in the protocol itself. In
practice, some error detection has been added by computing a checksum in the
DSP’s in the DCM on the packets.

2

 ��

Figure 2: Transmission protocol between the Partition Module and JSEB as
observed for a single event. The signals are described in the text.

2 Firmware

The design of the FPGA logic was done with the Altera Max+Plus II [2] soft-
ware. The resulting pof file is loaded into the Altera FPGA (Altera EPF10K30AFC484-
1) by means of an Altera Byte Blaster cable and the serial EEPROM (Altera
EPC2LC20) through the P1 header on the board. The designs that have been
implemented so far utilize about 80% of the blocks available in the FPGA.

2.1 Version 0x11

Version 0x11 was used for all data taken in Run 3. This version corrected prob-
lems with the pointer bank in previous versions, although there was evidence
that the next-to-last pointer in bank 1 was sometimes corrupted; the workaround
for this problem was to compare the pointer with the value in CSR[6], which
was found to be correct. DMA writes from the PCI bus were known not to
work correctly, so that memory tests had to be done with single word writes
(but DMA reads).

3

Some of the DCMGROUP’s were found to have data errors (detected by the
DCM checksum) in the last hundred or so words of a bank, usually in a small
fraction of the events, but sometimes in a substantial fraction of the events. A
workaround for this was developed, by adding a “padding” packet of all zeroes
at the end of an event. When this was done, the rest of the data were found to
have errors in a negligible fraction of the events.

2.2 Version 0x13

The main change to version 0x13 was to fix the DMA writes from the PCI bus.
However, the compilation from schematics was done with a newer version of the
Max+Plus II software.

2.3 Future Enhancements

There are a number of changes that are being discussed for future versions. It is
hoped that burst mode DMA reads can be made reliable. It may make sense to
modify the mechanism for clearing the registers so that they can all be read after
swapping banks; this would allow the interrupt handler to do nothing except
swap banks. This would not only be slightly more efficient, it would simplify
the interrupt handling.

3 Memory Map

The register map of the basic control and status registers is shown in Table
1. The pointers to the events in the bank when multiple events are buffered
is shown in Table 2. Note that the pointer to the first event should always be
zero, and that the addresses read are to long words. Also,the pointer bank is
read after swapping banks, so the pointers for bank 1 must be read after bank
0 is found ready.

Basic operation of the JSEB consist of the following:

• Reset by setting CSR[0]<2> = 1

• Set the number of events and words per bank by writing to CSR[3] and
CSR[4]

• Wait until CSR[0]<1> == 1, indicating bank ready

• Determine which bank is ready by reading CSR[0]<0>

• Read CSR[1] or CSR[2] to determine the number of words and events in
the bank

• Swap banks by writing CSR[0]<0> = 1

• Read pointers from CSR[0x400] or CSR[0x600] if multiple events per bank

4

Register <Bits> Read/Write Offset Use

CSR[0] R/W 0x0 Main Control and Status Register
<0> R bank 0/1 visible
<0> W swap banks
<1> R bank ready
<2> W reset
<3> R/W enable interrupt
<16:23> R FPGA version

CSR[1] R 0x4 Bank 0 status
<0:19> R Words in bank 0
<20:26> R Events in bank 0
<31> R Bank (should be 0)

CSR[2] R 0x8 Bank 1 status
<0:19> R Words in bank 1
<20:26> R Events in bank 1
<31> R Bank (should be 1)

CSR[3] R/W 0xc Event limit

<0:6> R/W
Maximum number of
events per bank + 1
(default 0x0)

CSR[4] R/W 0x10 Word count limit

<0:17> R/W
Maximum number of
words per bank (default
0x20000)

CSR[5] R/W 0x14 Pointer to last event in bank 1

<0:17> R
Added for diagnostic
purposes

CSR[6] R/W 0x18 Pointer to next-to-last event in bank 1

<0:17> R/W
Added for diagnostic
purposes

Table 1: Control and Status Registers.

• Read the data from address 0x0

• Wait for the next bank to be ready

3.1 Interrupts

The JSEB can generate a PCI interrupt on bank ready. The interrupt is the
PCI Local Interrupt, and to enable it, one must set CSR[0]<3> as described
above, and set bits 8 and 11 in the INTCSR in the PLX. The source of a PCI
interrupt must be cleared in the interrupt handler, or the computer will hang.

5

Location Bank Pointer to event

CSR[400] 0 0
CSR[404] 0 1
.
.
.
CSR[5fc] 0 127
CSR[600] 1 0
CSR[604] 1 1
.
.
.
CSR[7fc] 1 127

Table 2: Pointer bank.

4 Jungo Driver Support

Software support for boards based on the PLX 9080 have been provided with
WinDriver by Jungo [3]. This is commercial software which provides a propri-
etary general purpose driver for PCI devices and access routines for a specific
board which can be tailored to the design by creation from a template or by
use of a software wizard. The access routines (which are often referred to as
the driver) are identical in Windows and Linux. All the access routines are
implemented in two files, jseb lib.c and jseb lib.h.

4.1 Linux

The Linux library was created from a template provided for the PLX 9080 called
p9080. The JSEB driver was created from the p9080 driver template by simply
replacing all instances of p9080 with JSEB. Additional functions were added
to customize the driver by analogy with the driver created by the WinDriver
software wizard (wdwizard). The driver was created under Red Hat 9.0.

The generic Jungo PCI driver (windrvr6) is provided as an installable kernel
module which gives kernel support for any PCI board. (It is possible for Version
5.x Jungo drivers to coexist with Version 6.x drivers.) The version described in
this document is WinDriver 6.02 for Linux.

In Linux, the driver is a loadable module, which can be loaded like this:

/sbin/insmod windrvr6

4.2 Windows

The same access routines can be used in Win32. A GNU makefile is constructed
for building applications in Windows 2000 so that development can take place
in the Cygwin [4] environment.

6

4.3 PLX Registers

The basic PLX registers [1] can be accessed by standard routines provided in
the driver, for example:

intcsr_read = JSEB_ReadReg (hPlx, JSEB_INTCSR);

JSEB_WriteReg (hPlx, JSEB_INTCSR, intcsr_write);

The names of the registers are defined in jseb lib.h; INTCSR is the Interrupt
Control/Status Register.

4.4 Basic Low Level Functions

4.4.1 JSEB ReadCSRn

Purpose Reads the values of CSR[n] as described in Table 1.

Prototype DWORD JSEB ReadCSRn(JSEB HANDLE hJSEB)

Parameters
Name Type Input/Output
hJSEB HANDLE Input

Return Value Returns value of CSR[n].

4.4.2 JSEB WriteCSRn

Purpose Write to CSR[n].

Prototype void JSEB ReadCSRn(JSEB HANDLE hJSEB, DWORD data)

Parameters
Name Type Input/Output
hJSEB HANDLE Input
data DWORD Input

Return Value None.

4.4.3 JSEB Reset

Purpose Full power up reset. Sets maximum number of events and words to
defaults.

Prototype void JSEB Reset(JSEB HANDLE hJSEB)

Parameters
Name Type Input/Output
hJSEB HANDLE Input

7

Return Value None.

4.4.4 JSEB SwapBanks

Purpose Swaps the active bank.

Prototype void JSEB SwapBanks(JSEB HANDLE hJSEB)

Parameters
Name Type Input/Output
hJSEB HANDLE Input

Return Value None.

4.4.5 JSEB BufferReady

Purpose Checks the bank ready bit in CSR[0].

Prototype void JSEB BufferReady(JSEB HANDLE hJSEB)

Parameters
Name Type Input/Output
hJSEB HANDLE Input

Return Value TRUE indicates that a bank is ready to read.

4.4.6 JSEB Version

Purpose Returns the version of the firmware.

Prototype DWORD JSEB Version(JSEB HANDLE hJSEB)

Parameters
Name Type Input/Output
hJSEB HANDLE Input

Return Value Version number of the firmware in the JSEB.

4.5 Functions Used in Normal Operation

4.5.1 JSEB OpenOne

Purpose Opens a JSEB.

Prototype BOOL JSEB OpenOne(JSEB HANDLE *phJSEB)

8

Parameters
Name Type Input/Output
phJSEB *HANDLE Input

Return Value Returns TRUE on successful opening of a JSEB. The pointer
to the JSEB handle is used in subsequently called functions.

4.5.2 JSEB Initialize

Purpose Resets the JSEB and sets the maximum number of events and words
per bank.

Prototype void JSEB Initialize(JSEB HANDLE hJSEB, DWORD event limit,
DWORD word limit)

Parameters
Name Type Input/Output
hJSEB HANDLE Input
event limit DWORD Input
word limit DWORD Input

Return Value None.

4.5.3 JSEB GetStatus

Purpose Reads essential registers and then swaps banks, making the event
counters and pointers available in a returned structure.

Prototype BOOL JSEB GetStatus(JSEB HANDLE hJSEB, JSEB Status
*pStatus)

Parameters
Name Type Input/Output
hJSEB HANDLE Input
pStatus *JSEB Status Output
.bank
.events
.words
.pointer[128]

Return Value Returns TRUE on successful read of the status.

4.5.4 JSEB ReadData

Purpose Reads data from the active bank after swapping.

9

Prototype BOOL JSEB ReadData(JSEB HANDLE hJSEB, DWORD word count,
PVOID buffer)

Parameters
Name Type Input/Output
hJSEB HANDLE Input
word count DWORD Input
buffer PVOID Output

Return Value Returns TRUE on successful read of the status.

4.6 PLX Registers

In addition to registers defined in the Altera firmware, the PLX registers [1] can
be accessed.

The PLX 9080 is capable of burst mode DMA transfers.

5 Test Programs and Examples

A number of test programs have been written to exercise the JSEB hardware
and the software.

5.1 memtest

memtest is a basic read/write memory test with a variety of test patterns.

memtest [-sv]

Where the options are:

-s Single word writes (used to test whether reading or writing data has errors,
since single word writes have been found to be very reliable).

-v Verbose printout of errors (can be very lengthy).

5.2 speed

speed is used to measure the read speed of data over the PCI bus.

speed bytecount loopcount

The two arguments are:

bytecount Number of bytes to read in a single transfer

loopcount Number of times to repeat the transfer (to get average timing)

This program can be called from a Perl script (speedmap.pl) which measures
the read speed as a function of the length of the transfer (data shown in Figure
3 was taken this way).

10

5.3 readdata

readdata is a program for reading data from the PM and printing it to stdout,
generally without regard to the data format or organization. The program is
built to buffer 100 events per bank by default.

readdata [i]

The optional argument i is an integer such that:

0 Prints event and word counts and all pointers and data to stdout (the default)

1 Prints event and word counts and all pointers to stdout

2 Prints event and word counts to stdout

>2 Prints nothing (but reads all the data)

5.4 jsebdaq

jsebdaq is a program for reading data from the PM and recording it to the
PHENIX Raw Data Format (PRDF), by Martin Purschke. The program is
built to buffer 100 events per bank by default.

jsebdaq [options] filename

The options are:

-b <size in MB> Buffersize for output prdf (not more that 12 MB)

-w <milliseconds> Wait so many ms between events

-n <events> So many events (default 1000)

-v Verbose

-h Help text

5.5 Data Integrity Checking

A number of programs are useful for checking the integrity of the data; indeed
any program sensitive to errors in the data can be useful. Two programs [5]
written by Mickey Chiu, have proven especially useful:

badjseb filename Checks the “padding” bank

dcmchecksum filename Compares the checksum calculated by the DCM’s
with one calculated from the raw data

11

5.6 Using the DCM’s to Produce Fake Data

It is very useful to use a DCMGROUP (a group of adjacent DCM’s and their
Partition Module) to produce fake data.

Here are the steps necessary to do that.

• Create the DCM configuration files from the pcf files in $RC HW CONF
like this:

process_pcf_file.sh -DPAR_JSEB -DFAKE dc.w.pcf

or

process_pcf_file.sh -DPAR_JSEB -DFAKE5 dc.w.pcf

The first produces data in exactly the format of the granule, but the data
payload are all 0x5555 and 0xaaaa, the second produces a data payload
which consist of a counter.

• Use the DCM program to initialize the DCM’s and take data:

dcm dc.w

301

303

305

0

none

This will start the DCM running and generating data. You can leave it
running, and just start and stop a JSEB test program, such as the one
shown in the next section, to get data into the JSEB.

5.7 Simple Example of Reading Data

This is a very simple example of a program that reads data from the JSEB.
This program illustrates the use of basic functions in the library.

#include "lib/jseb_lib.h"

#include <stdio.h>

// 1 Mbyte - 8 kbyte in words

#define BUFFER_LENGTH 260096

int main(int argc, char *argv[])

{

JSEB_HANDLE hPlx;

12

JSEB_Status JStatus;

DWORD max_events = 100;

DWORD max_words = 200000;

DWORD word_count = BUFFER_LENGTH;

DWORD buffer[BUFFER_LENGTH];

int wait;

if (!JSEB_OpenOne(&hPlx))

{

printf("error opening jseb\n");

exit(0);

}

JSEB_Initialize(hPlx, max_events, max_words);

for (;;)

{

for (wait=0;; wait++)

if (JSEB_BufferReady(hPlx)) break;

JSEB_GetStatus(hPlx, &JStatus);

JSEB_ReadData(hPlx, JStatus.words, buffer);

}

if (hPlx) JSEB_Close(hPlx);

return 0;

}

6 Speed

The speed of reading banks of various lengths is shown in Figure 3. The speed
is measured by repeatedly carrying out a DMA read of a block of data and
measuring the elapsed time with gettimeofday (which returns microsecond pre-
cision, although since the total time of the repeated transfers is several seconds,
the precision does not contribute significantly to the uncertainty). The speed
was measured with burst mode enabled and without, although there is evidence
for data corruption in some cases in transfers with burst mode enabled.

13

Transfer length (Mbyte)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
pe

ed
 (M

by
te

/s
ec

)

0

20

40

60

80

100

JSEB Read Speed

Figure 3: The speed for reading banks as a function of the bank length. The
circles are with continuous burst mode DMA, the squares are for four word
burst mode DMA, and the triangles are for normal DMA.

7 More Information

There is more information about the JSEB on a web page [6]. Code and addi-
tional documentation can be found in two places:

/home/phoncs/haggerty/jseb Early development, mainly for Windows NT,
and test records

/home/phnxrc/haggerty/jseb Development described in this document, in-
cluding Linux driver

14

8 Acknowledgments

Many people have contributed to the development of the JSEB since the in-
ception of the project. Steve Lin worked on an early version of a board that
demonstrated the communication with the Partition Modules as a graduate
student at Stony Brook and later as a staff engineer. The communication pro-
tocol with the Partition Module was developed and tested in collaboration with
Cheng-Yi Chi and Bill Sippach. Peter Steinberg and Brian Cole developed
driver software based on the PLX Software Development Kit which was used
in PHENIX runs in FY01 and FY02, and a class library for handling JSEB
operations. Mickey Chiu observed data corruption at the end of some banks,
created the DCM padding banks as a workaround to the problem, and wrote
some software to check the integrity of the data. Martin Purschke adapted his
event libraries in order to be able to log data in PHENIX Raw Data Format
from the SEB. The new Smart Partition Module was tested in collaboration
with Jamie Nagle. Several other groups have adapted the JSEB to their uses,
notably Sam Hoblitt in the LEGS group, who has written an Alpha VMS driver
for it, and has shared his experience with us. Michael Bjorndal helped make
some of the measurements of rates.

References

[1] http://www.plxtech.com/products/default.htm “PCI 9080 Data Book Ver-
sion 1.06.”

[2] http://www.altera.com/products/software/pld/products/maxplus2/mp2-
index.html

[3] http://www.jungo.com

[4] http://www.cygwin.com

[5] Mickey Chiu developed these programs and I made minor modifications
and rebuilt them in /home/phnxrc/haggerty/chiu/utilities.

[6] http://www.phenix.bnl.gov/phenix/project info/electronics/haggerty/jseb

15

